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Outline	


n  A-slash SeqSrc method   

n  QED reweighting  
 

n  All Mode Averaging (AMA) 



Aslash SeqSrc	




Motivation	


n  　Light-by-Light  only needs the part of O(α3) 
n  Currently O(α), O(α2), and unwanted O(α3) 

are subtracted    (T. Blum’s talk)  
        [ M. Hayakawa et.al PoS LAT2005 353 ] 

 

 
 
n  QED   perturbative expansion works 
→　Order by Order Feynman diagram calculation 
on lattice  :  Aslash SeqSrc method 
	




Aslash SeqSrc	


n  Quark propagator with QED charge,  S(e) 
 
 
 

 
n  Each term could be computed by the sequential 

source method : 
 
 

n       is the conserved vector current with photon 
field contracted :	


= + + + + · · ·



QEDA,QEDB

Aslash SeqSrc for LbL	


n  Insert  two  Aslash  for each of quark and lepton 
n  Use statistically independent photon field 

(A-photon and B-photon) 
 
 
 
 
 
 

n  An alternative to the subtraction method 
n  Explicitly free from lower/higher orders in alpha 
n  Could recycle low modes of pure QCD  propagators	




QED reweighting	


T. Ishikawa et. al.  
“Full QED+QCD low-energy constants 

through reweighting”  
arXiv:1202.6018 

	




Disconnected diagrams in HLbL	


n  Missing disconnected diagrams  
 
 
 
 
 
 
n  The second quark loop could be automatically 

evaluated as sea quark effect, if the sea quark 
electric charge effect is taken into account 

　　→  QED reweighting      (or  dynamics QCD+QED)	




QED reweighting	

n  Full QED (+QCD)  from quenched QED (+QCD) 

         [ Duncan et. al. PRD72 094509(2005) ] 
 by computing  the reweighting factor: 

on the dynamical QCD configuration    
 
 
 
n  Stochastic eval.  via Root trick [T.Ishikawa et. al. 2007 ]           	


w[UQCD, A] =
detD[UQCD × eiqeA]

detD[UQCD]

O(e2)

detΩ = (detΩ1/n)n =
n�

i=1

�e−ξ†i (Ω
−1/n−1)ξi�ξi



QED reweighting result 
[ T. Ishikawa ]	


n  PS meson mass	
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ChPT + gamma  fit   
[ T. Ishikawa ]	


n  Fitting es ev  term in squared  PS mass  	
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FIG. 3. e2s contribution to M2
PS (uncorr). Lines represent

uncorrelated fits to SU(2) PQChPT.
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FIG. 4. Same as Fig. 3 but for (q1, q3) = (+2/3,−1/3),
showing the valence quark mass dependence.
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FIG. 5. esev(T3-even) contribution to M2
PS (uncorr). Lines

represent uncorrelated fits to SU(2) PQChPT.
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FIG. 6. Same as Fig. 5 but for (q1, q3) = (+2/3,−1/3),
showing the valence quark mass dependence.
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FIG. 7. esev(T3-odd) contribution to M2
PS (uncorr). Lines

represent uncorrelated fits to SU(2) PQChPT.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
a(m1+mres(QCD)) + a(m3+mres(QCD))

-1!10-5
-5!10-6

0
5!10-6
1!10-5

am3 = 0.010
am3 = 0.020
am3 = 0.030

esev (T3-odd) term in "MPS
2  (GeV)2

FIG. 8. Same as Fig. 7 but for (q1, q3) = (+2/3,+1/3),
showing the valence quark mass dependence.

fit, we choose a minimal set of data with smaller valence
quark masses, and ignore q6 dependence in B0 because
of smallness of e2 and Y1. We also neglect finite vol-
ume effects in this analysis, which could give significant
shifts in the EM mass spectrum, since the lattice volume
used here is small. However, we also note that the quark
masses used here are relatively heavy. Although the sta-
tistical error is large, the value of LEC C is consistent
with that obtained in quenched QED [4]. (The lattice
volume and the quark masses used in the chiral fit are
different between this work and Ref. [4]. The important
fact, however, is that the order of magnitude is consis-
tent between them.) The size of Y1 seems to be the same
as the other QED LEC’s in O(e2vm) terms determined in
quenched QED [4], which means the sea EM charge effect
is comparable to the valence one except for the Dashen
term.

In this study incorporating sea quark EM charges in
2+1 flavor lattice QED+QCD, we have shown that the
QED LEC’s are accessible using the reweighting method,
and that the sea quark LEC’s are the same size as the

TABLE II. QED low-energy constants at the chiral scale
Λχ = 1 GeV. Y1 is defined as Y1 = Y1trQ

2
s(3) for SU(3)

ChPT and Y1 = Y1trQ
2
s(2) + Y ′

1(trQs(2))
2 + Y ′′

1 q6trQs(2) for
SU(2) ChPT. J and K depict J = JtrQs(2) + J ′q6 and
K = KtrQs(2) + K′q6, respectively. The quenched QED
(qQED) values for C are quoted from Ref. [4], whose val-
ues are obtained from 243 × 64 lattice and by infinite volume
ChPT formula. The values of the LEC’s B0 and F0 used in
the chiral fit are quoted from Ref. [7].

SU(3) ChPT SU(2) ChPT
uncorr corr uncorr corr

107C (qQED) 2.2(2.0) – 18.3(1.8) –
107C 8.4(4.3) 8.3(4.7) 20(14) 15(21)
102Y1 -5.0(3.6) -0.4(5.6) – –
102Y1 -3.1(2.2) -0.2(3.4) -3.0(2.2) -0.2(3.4)
104J – – -2.6(1.6) -3.3(2.8)
104K – – -3.1(6.9) -3.7(7.8)

valence ones, as expected. In our analysis, the sign flip
engineering of EM charges proved to be highly effective,
similar to the ±e trick for the valence sector [3, 4]. Work



All Mode Averaging 
- a class of error reduction 

technique -	


E. Shintani, TI,  and   RBC in preparation	




State of Obvious 	


n  Many interesting physics are limited by statistical 
error 
 
 

n  Do more number of measurements,  Nmeas 
 

n  Change to  observable with smaller fluctuation,  C  
 

n  Covariant Approximation Averaging (CAA)  
 Combine the above using 
•  symmetries of the lattice action 
•  (crude) approximations 



Covariant Approximation Averaging 
( CAA )	


n  Original observable 
 

n  Covariant approximation of the observable 
under a lattice symmetry   
 
 

n  Unbiased improved estimator	




Covariant approximation	


n  O(appx) needs to be precisely (to the numerical 
accuracy required)  covariant under the 
symmetry of lattice action to avoid systematic 
errors. 

100 1 2 3 4 5 6 7 8 9

X 

 

U(x)

O(x,y),  y=1

100 1 2 3 4 5 6 7 8 9

X 

 

U^g(x)

O^g(x,y),  y=4

Delta x = 4

Figure 1: Transformed link field U g
µ(x) and a bi-local observable Og(x, y). If O is covariant

observable, the shape of Og(x, y) are exactly same as O(x, y).

The basic formula for the covariant approximation averaging is the following. The original
observable O is divided into its approximation O(appx) and the rest O(rest),

O = O
(appx) +O

(rest) . (7)

If the approximation is good, O ≈ O(appx), then O(rest) � O, and the statistical fluctuation
originated from O(rest) is suppressed. To reduce the statistical noise from O(appx), we will
average its translation O(appx),g over the set of translations, g ∈ G :

Oimp =
1

NG

�

g∈G

O
(appx),g +O

(rest) . (8)

If g is a symmetry of lattice action and if the approximation O(appx),g is covariant, this
improved estimator has the correct ensemble average without introducing systematic errors
:

�Oimp� = �O� (9)

1It could be extended to the cases for general symmetry transformation, but for conciseness, we restrict
to the translations. Christoph may be able to help here.

3

One	
  should	
  check	
  in	
  the	
  code	
  using	
  explicitly	
  shi3ed	
  gauge	
  configura7on	




Why expect improvements ?	


n  O(imp) has smaller error, smaller C 
      <=  accuracy of approximation controls error, 
      shouldn’t be too accurate (0.1% is good enough) 
 

n  NG  suppresses the bulk part of noise cheaply 
        Valence	
  version	
  of	
  Hasenbushing	
  in	
  HMC	




Examples of covariant approximations	


n  Low mode approximation used in the Low Mode 
Averaging ( LMA )    
         L. Giusti et al (2004), see also  T. DeGrand et al. (2004) 

   accuracy control :  # of eigen mode 



Examples of Covariant Approximations 
(contd.)	


n  All Mode Averaging 
AMA 
 Sloppy CG  or 
 Polynomial  
   approximations 
 

0 0.5 1 1.5 2 2.5
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Figure 3: Polynomial approximation of 1/λ, Npoly = 10, the mini-max approximation for
the relative error, for λ ∈ [0.052, 1.672].
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accuracy	
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  low	
  mode	
  part	
  :	
  #	
  of	
  eig-­‐mode	
  
•  	
  mid-­‐high	
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AMA in USQCD Static-light  
[ PI Tomomi Ishikawa ] 	
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AMA results for hadron 2pt functions 
[ E. Shintani ]	


 



Nucleon Magnetic formfactor 
[ E. Shintani ]	
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Figure 7: Gm for neutron at m = 0.01. (Top) Original, (Middle) LMA, (Bottom) AMA.
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Original	
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 AMA	




Examples of Covariant 
Approximations (contd.)	


n  Less expensive (parameters of) fermions : 
 
•     Larger mf 
•     Smaller Ls DWF 
•     Mobius    
•   even staggered or Wilson ….. 

 

n  Different boundary conditions 
n  More than one kinds of approximation  

  (c.f. multi mass Hasenbushing) 
 
Strongly depends on Observables / Physics  (YMMV) 
Would work better for EXPENSIVE observables and/or 
fermion,  potentially a game changer ?	




Other related/similar techniques 	


n  LMA   
  L. Giusti, P. Hernandez, M. Laine, P. Weisz and H. Wittig, JHEP 0404, 013 (2004) 
   see also H. Neff, N. Eicker, T. Lippert, J. W. Negele and K. Schilling, Phys. Rev. D 64 (2001) 
114509 and T. DeGrand and S. Schaefer, Comput. Phys. Commun. 159 (2004) 185 

    works for low mode dominant quantities 
 
n  Truncated Solver Method  (TSM)  
   G. Bali, S. Collins, A. Schaefer, Comput. Phys. Commun. 181 (2010) 1570 

   uses stochastic noise to avoid systematic error 
 
n  All-to-all propagator   

 J.Foley, K.Juge, A. O’Cais, M. Peardon, S. Ryan, J-I. Skullerud, Comput.Phys.Commun. 
172 (2005) 145 
   uses stochastic noise 
   could use CAA as a part of A2A	




Summary	


n  Aslash method will be useful for both HLbL and 
QCD+QED simulations (isospin breaking studies) 
 

n  QED reweighting is an option for disconnected 
diagram of HLbL 
 

n  AMA :  Statistical error reduction technique 
 
 
 



Other technical details	


n  Implicitly Restarted Lanczos with Polynomial 
acceleration and spectrum shifts for DWF and 
staggered in CPS++  [ E. Shintani, T. Blum, TI ]. 

n  Eigen Vector compression / decompression 

n  Sea Electric Charge is now controlled by QED 
reweighting 
     [ T. Ishikawa et. al. arXiv:1202.6018 ] 

n  Aslash-SeqSrc method 



Other considerations and quantities

• �A-Sequential source method. Compute each term of propagator in the e expansion.

S(e) = S(0) + ieS(0) �AS(0) − e2S(0) �AS(0) �AS(0) − e2S(0)( �A)2S(0) · · ·

q1q2e2 :

2

1

2

1

=⇒

make the contraction to desired orders of wanted diagrams piece by piece.

2

1

2

1

2

1

G(t; q1, q2) =

e2 : q1q2 q21 q22

2

1

2

1

e4 : q21q
2
2

q21q
2
2

2

1

* No O(e2n+1) noise to disturb O(e2n), can skip diagrams of lower orders

than the target.

* Value of q and e could be determined off-line.

* # of solves are equal or less up to O(e2), compared to the original

methods, needs five solves (q = 0,±2e/3,∓e/3).
* Could use the e = 0 Eigen values/vectors.

Taku Izubuchi, USQCD All Hands Meeting, JLab, May 6, 2011 25



Deflation using low eigenmodes from 
Lanczos	


 



Larger mass as CAA 
  [ Taichi Kawanai ]	


reduces the dispersion of rest part. Also I plot the parameter t and q. These parameters satisfy the

relation r = q + 1. We need r > 1/2 to reduce the statistical error in final analysis.

Finally I show the results for the effective mass in the Fig.3. and Table 1. The results for im-

provement are consistent with original ones within error bars and its statustical error bars are slightly

smaller than original ones. Actually approximation plotted as green points is corresponding to Bs

meson in this test. The ratio of dispersion for improvement to original one is also plotted as gray line

on the right axis. Fitting results are shown in Table 1. As a result, the improvement finaly gives 82 %

statistical error of original. This improvement rate is corresponding to statistics increased by half. As

an experiment, I have tried to extrapolate the data by using the improvement and approximate one.

The advantage of this error reduction techniques using heavier quark propagator is what approximate

is used to extrapolate to physical point. Finally I show the results for the effective mass in the Fig.3.
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Figure 3: (left) The effective mass plots. The ratio of dispersion for improvement to original one is

also plotted as gray line. (right)Extrapolation

and Table 1.

3 Estimation for error reduction per cost.

In this section, I will discuss what is optimal choice of NG. Here, let me consider following game. one

firstly has N measurement for target observable, but none for improvement and standard deviation is

defined as σ in this case. He is still thinking which increasing statistics for target or improvement is

more economical to get a minimal error. Cost parameter c is define here, which indicate that how much

cost to calculate single measurement for improvement is smaller than original one. For example, if the

time to calculate for the improvement is twice shorter than original, c = 0.5. Therefore, The cost to

calculate NNG improvement observables is same as cost to add cNNG statistics to original observables.

He compare the errors obtained from both case with the same cost: (i) N original measurements +

NNG improvement measurements (ii) only N(1+cNG) original measurements. The standard deviation

Table 1: Result for masses

fit range χ2/d.o.f. p-vale improvement rate

org [6:15] 3.06142e+00 +/- 3.76763e-03 3.0614(38) 1.20 29% -

NG = 8 [6:15] 3.06306e+00 +/- 2.45807e-03 3.0631(25) 1.55 12% 65%

NG = 4 [6:15] 3.06355e+00 +/- 2.70984e-03 3.0636(27) 1.19 30% 72%

NG = 2 [6:15] 3.06379e+00 +/- 3.09905e-03 3.0638(31) 0.89 53% 82%

extrapolate org 3.02130e+00 +/- 6.50622e-03 3.0213(65) -

NG = 8 3.02518e+00 +/- 3.78378e-03 3.0252(38) 74%

3

24^3x64x16,	
  20	
  config	
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  mf=0.01	
  (target)	
  	
  	
  	
  mf=0.04	
  	
  “approxima7on”	




QED sea charge effect  
[Tomomi Ishikawa]	
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